A Resampling-Based Stochastic Approximation Method for Analysis of Large Geostatistical Data
نویسندگان
چکیده
The Gaussian geostatistical model has been widely used in modeling of spatial data. However, it is challenging to computationally implement this method because it requires the inversion of a large covariance matrix, particularly when there is a large number of observations. This article proposes a resampling-based stochastic approximation method to address this challenge. At each iteration of the proposed method, a small subsample is drawn from the full dataset, and then the current estimate of the parameters is updated accordingly under the framework of stochastic approximation. Since the proposed method makes use of only a small proportion of the data at each iteration, it avoids inverting large covariance matrices and thus is scalable to large datasets. The proposed method also leads to a general parameter estimation approach, maximum mean log-likelihood estimation, which includes the popular maximum (log)-likelihood estimation (MLE) approach as a special case and is expected to play an important role in analyzing large datasets. Under mild conditions, it is shown that the estimator resulting from the proposed method converges in probability to a set of parameter values of equivalent Gaussian probability measures, and that the estimator is asymptotically normally distributed. To the best of the authors’ knowledge, the present study is the first one on asymptotic normality under infill asymptotics for general covariance functions. The proposed method is illustrated with large datasets, both simulated and real. Supplementary materials for this article are available online.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملThe Fisher Information Matrix: Performance Measure and Monte Carlo-Based Computation
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This paper reviews some basic principles associated ...
متن کاملComparing Geostatistical Seismic Inversion Based on Spectral Simulation with Deterministic Inversion: A Case Study
Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data and the result of deterministic inversion is smooth. Low frequency component is obtained fro...
متن کاملBagging for Path-Based Clustering
A resampling scheme for clustering with similarity to bootstrap aggregation (bagging) is presented. Bagging is used to improve the quality of pathbased clustering, a data clustering method that can extract elongated structures from data in a noise robust way. The results of an agglomerative optimization method are influenced by small fluctuations of the input data. To increase the reliability o...
متن کاملMonte Carlo Computation of the Fisher Information Matrix in Nonstandard Settings
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This article reviews some basic principles associate...
متن کامل